Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Biol Rep ; 50(3): 2269-2281, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-2259695

RESUMO

BACKGROUND: BSG (CD147) is a member of the immunoglobulin superfamily that shows roles for potential prognostics and therapeutics for metastatic cancers and SARS-CoV-2 invasion for COVID-19. The susceptibility of malignant cancers to SARS-CoV-2 as well as the correlations between disease outcome and BSG expression in tumor tissues have not been studied in depth. METHODS: In this study, we explored the BSG expression profile, survival correlation, DNA methylation, mutation, diagnostics, prognostics, and tumor-infiltrating lymphocytes (TILs) from different types of cancer tissues with corresponding healthy tissues. In vitro studies for cordycepin (CD), N6-(2-hydroxyethyl) adenosine (HEA), N6, N6-dimethyladenosine (m62A) and 5'-uridylic acid (UMP) on BSG expression were also conducted. RESULTS: We revealed that BSG is conserved among different species, and significantly upregulated in seven tumor types, including ACC, ESCA, KICH, LIHC, PAAD, SKCM and THYM, compared with matched normal tissues, highlighting the susceptibility of these cancer patients to SARS-CoV-2 invasion, COVID-19 severity and progression of malignant cancers. High expression in BSG was significantly correlated with a short OS in LGG, LIHC and OV patients, but a long OS in KIRP patients. Methylation statuses in the BSG promoter were significantly higher in BRCA, HNSC, KIRC, KIRP, LUSC, PAAD, and PRAD tumor tissues, but lower in READ. Four CpGs in the BSG genome were identified as potential DNA methylation biomarkers which could be used to predict malignant cancers from normal individuals. Furthermore, a total of 65 mutation types were found, in which SARC showed the highest mutation frequency (7.84%) and THYM the lowest (0.2%). Surprisingly, both for disease-free and progression-free survival in pan-cancers were significantly reduced after BSG mutations. Additionally, a correlation between BSG expression and immune lymphocytes of CD56bright natural killer cell, CD56dim natural killer cell and monocytes, MHC molecules of HLA-A, HLA-B, HLA-C and TAPBP, immunoinhibitor of PVR, PVRL2, and immunostimulators of TNFRSF14, TNFRSF18, TNFRSF25, and TNFSF9, was revealed in most cancer types. Moreover, BSG expression was downregulated by CD, HEA, m62A or UMP in cancer cell lines, suggesting therapeutic potentials for interfering entry of SARS-CoV-2. CONCLUSIONS: Altogether, our study highlights the values of targeting BSG for diagnostic, prognostic and therapeutic strategies to fight malignant cancers and COVID-19. Small molecules CD, HEA, m62A and UMP imply therapeutic potentials in interfering with entry of SARS-CoV-2 and progression of malignant cancers.


Assuntos
COVID-19 , Neoplasias , Humanos , COVID-19/diagnóstico , COVID-19/genética , Teste para COVID-19 , Expressão Gênica , Genes MHC Classe I , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Prognóstico , SARS-CoV-2
2.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2099666

RESUMO

As a cellular protease, transmembrane serine protease 2 (TMPRSS2) plays roles in various physiological and pathological processes, including cancer and viral entry, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we conducted expression, mutation, and prognostic analyses for the TMPRSS2 gene in pan-cancers as well as in COVID-19-infected lung tissues. The results indicate that TMPRSS2 expression was highest in prostate cancer. A high expression of TMPRSS2 was significantly associated with a short overall survival in breast invasive carcinoma (BRCA), sarcoma (SARC), and uveal melanoma (UVM), while a low expression of TMPRSS2 was significantly associated with a short overall survival in lung adenocarcinoma (LUAD), demonstrating TMPRSS2 roles in cancer patient susceptibility and severity. Additionally, TMPRSS2 expression in COVID-19-infected lung tissues was significantly reduced compared to healthy lung tissues, indicating that a low TMPRSS2 expression may result in COVID-19 severity and death. Importantly, TMPRSS2 mutation frequency was significantly higher in prostate adenocarcinoma (PRAD), and the mutant TMPRSS2 pan-cancer group was significantly associated with long overall, progression-free, disease-specific, and disease-free survival rates compared to the wild-type (WT) TMPRSS2 pan-cancer group, demonstrating loss of functional roles due to mutation. Cancer cell lines were treated with small molecules, including cordycepin (CD), adenosine (AD), thymoquinone (TQ), and TQFL12, to mediate TMPRSS2 expression. Notably, CD, AD, TQ, and TQFL12 inhibited TMPRSS2 expression in cancer cell lines, including the PC3 prostate cancer cell line, implying a therapeutic role for preventing COVID-19 in cancer patients. Together, these findings are the first to demonstrate that small molecules, such as CD, AD, TQ, and TQFL12, inhibit TMPRSS2 expression, providing novel therapeutic strategies for preventing COVID-19 and cancers.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Neoplasias Pulmonares , Neoplasias da Próstata , Masculino , Humanos , SARS-CoV-2 , COVID-19/genética , Prognóstico , Adenosina , Mutação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Serina Endopeptidases/genética
3.
Front Immunol ; 13: 958898, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2080140

RESUMO

ISG20 inhibits viruses such as SARS-CoV-2 invasion; however, details of its expression and regulation with viral susceptibility remain to be elucidated. The present study analyzed ISG20 expression, isoform information, survival rate, methylation patterns, immune cell infiltration, and COVID-19 outcomes in healthy and cancerous individuals. Cordycepin (CD) and N6, N6-dimethyladenosine (m6 2A) were used to treat cancer cells for ISG20 expression. We revealed that ISG20 mRNA expression was primarily located in the bone marrow and lymphoid tissues. Interestingly, its expression was significantly increased in 11 different types of cancer, indicating that cancer patients may be less vulnerable to SARS-CoV-2 infection. Among them, higher expression of ISG20 was associated with a long OS in CESC and SKCM, suggesting that ISG20 may be a good marker for both viral prevention and cancer progress. ISG20 promoter methylation was significantly lower in BLCA, READ, and THCA tumor tissues than in the matched normal tissues, while higher in BRCA, LUSC, KIRC, and PAAD. Hypermethylation of ISG20 in KIRC and PAAD tumor tissues was correlated with higher expression of ISG20, suggesting that methylation of ISG20 may not underlie its overexpression. Furthermore, ISG20 expression was significantly correlated with immune infiltration levels, including immune lymphocytes, chemokine, receptors, immunoinhibitors, immunostimulators, and MHC molecules in pan-cancer. STAD exhibited the highest degree of ISG20 mutations; the median progression-free survival time in months for the unaltered group was 61.84, while it was 81.01 in the mutant group. Isoforms ISG20-001 and ISG20-009 showed the same RNase_T domain structure, demonstrating the functional roles in tumorigenesis and SARS-CoV-2 invasion inhibition in cancer patients. Moreover, CD and m6 2A increase ISG20 expression in various cancer cell lines, implying the antiviral/anti-SARS-CoV-2 therapeutic potential. Altogether, this study highlighted the value of combating cancer by targeting ISG20 during the COVID-19 pandemic, and small molecules extracted from traditional Chinese medicines, such as CD, may have potential as anti-SARS-CoV-2 and anticancer agents by promoting ISG20 expression.


Assuntos
COVID-19 , Exorribonucleases , Neoplasias , Antivirais/farmacologia , COVID-19/genética , Exorribonucleases/genética , Humanos , Neoplasias/complicações , Pandemias , RNA Mensageiro , SARS-CoV-2
4.
Frontiers in immunology ; 13, 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-2045194

RESUMO

ISG20 inhibits viruses such as SARS-CoV-2 invasion;however, details of its expression and regulation with viral susceptibility remain to be elucidated. The present study analyzed ISG20 expression, isoform information, survival rate, methylation patterns, immune cell infiltration, and COVID-19 outcomes in healthy and cancerous individuals. Cordycepin (CD) and N6, N6-dimethyladenosine (m62A) were used to treat cancer cells for ISG20 expression. We revealed that ISG20 mRNA expression was primarily located in the bone marrow and lymphoid tissues. Interestingly, its expression was significantly increased in 11 different types of cancer, indicating that cancer patients may be less vulnerable to SARS-CoV-2 infection. Among them, higher expression of ISG20 was associated with a long OS in CESC and SKCM, suggesting that ISG20 may be a good marker for both viral prevention and cancer progress. ISG20 promoter methylation was significantly lower in BLCA, READ, and THCA tumor tissues than in the matched normal tissues, while higher in BRCA, LUSC, KIRC, and PAAD. Hypermethylation of ISG20 in KIRC and PAAD tumor tissues was correlated with higher expression of ISG20, suggesting that methylation of ISG20 may not underlie its overexpression. Furthermore, ISG20 expression was significantly correlated with immune infiltration levels, including immune lymphocytes, chemokine, receptors, immunoinhibitors, immunostimulators, and MHC molecules in pan-cancer. STAD exhibited the highest degree of ISG20 mutations;the median progression-free survival time in months for the unaltered group was 61.84, while it was 81.01 in the mutant group. Isoforms ISG20-001 and ISG20−009 showed the same RNase_T domain structure, demonstrating the functional roles in tumorigenesis and SARS-CoV-2 invasion inhibition in cancer patients. Moreover, CD and m62A increase ISG20 expression in various cancer cell lines, implying the antiviral/anti-SARS-CoV-2 therapeutic potential. Altogether, this study highlighted the value of combating cancer by targeting ISG20 during the COVID-19 pandemic, and small molecules extracted from traditional Chinese medicines, such as CD, may have potential as anti-SARS-CoV-2 and anticancer agents by promoting ISG20 expression.

5.
J Cell Mol Med ; 25(8): 4157-4165, 2021 04.
Artigo em Inglês | MEDLINE | ID: covidwho-1091045

RESUMO

TMPRSS2 (OMIM: 602060) is a cellular protease involved in many physiological and pathological processes, and it facilitates entry of viruses such as SARS-CoV-2 into host cells. It is important to predict the prostate's susceptibility to SARS-CoV-2 infection in cancer patients and the disease outcome by assessing TMPRSS2 expression in cancer tissues. In this study, we conducted the expression profiles of the TMPRSS2 gene for COVID-19 in different normal tissues and PRAD (prostate adenocarcinoma) tumour tissues. TMPRSS2 is highly expressed in normal tissues including the small intestine, prostate, pancreas, salivary gland, colon, stomach, seminal vesicle and lung, and is increased in PRAD tissues, indicating that SARS-CoV-2 might attack not only the lungs and other normal organs, but also in PRAD cancer tissues. Hypomethylation of TMPRSS2 promoter may not be the mechanism for TMPRSS2 overexpression in PRAD tissues and PRAD pathogenesis. TMPRSS2 expresses eleven isoforms in PRAD tissues, with the TMPRSS2-001 isoform expressed highest and followed by TMPRSS2-201. Further isoform structures prediction showed that these two highly expressed isoforms have both SRCR_2 and Trypsin (Tryp_SPc) domains, which may be essential for TMPRSS2 functional roles for tumorigenesis and entry for SARS-CoV-2 in PRAD patients. Analyses of functional annotation and enrichment in TMPRSS2 showed that TMPRSS2 is mostly enriched in regulation of viral entry into host cells, protein processing and serine-type peptidase activity. TMPRSS2 is also associated with prostate gland cancer cell expression, different complex(es) formation, human influenza and carcinoma, pathways in prostate cancer, influenza A, and transcriptional misregulation in cancer. Altogether, even though high expression of TMPRSS2 may not be favourable for PRAD patient's survival, increased expression in these patients should play roles in susceptibility of the SARS-CoV-2 infection and clinical severity for COVID-19, highlighting the value of protective actions of PRAD cases by targeting or androgen-mediated therapeutic strategies in the COVID-19 pandemic.


Assuntos
Adenocarcinoma/genética , COVID-19/genética , Predisposição Genética para Doença/genética , Neoplasias da Próstata/genética , SARS-CoV-2/isolamento & purificação , Serina Endopeptidases/genética , Adenocarcinoma/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Metilação de DNA , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Regiões Promotoras Genéticas/genética , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA